a2 United States Patent

Marathe et al.

US009424015B2

US 9,424,015 B2
Aug. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR OPTIMIZING
SOFTWARE TRANSACTIONAL MEMORY
OPERATIONS USING STATIC CACHING OF
MEMORY OBJECTS

(75) Inventors: Virendra J. Marathe, Florence, MA
(US); Aleksandar Dragojevi¢,
Lausanne (CH); Tito L. Autrey, III,
Champaign, IL (US)

(73) Assignee: Oracle International Corporation,
Redwood City, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 977 days.

(21) Appl. No.: 13/023,402

(22) Filed: Feb. 8, 2011
(65) Prior Publication Data
US 2012/0204163 Al Aug. 9, 2012
(51) Imt. ClL
GO6F 9/45 (2006.01)
(52) US.CL
CPC e, GOG6F 8/4442 (2013.01)
(58) Field of Classification Search
CPC .......... GO6F 9/52; GO6F 9/466; GO6F 9/467

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2009/0031310 Al* 1/2009 Levetal. ...cccoovnenee 718/101
2009/0249318 Al* 10/2009 Ayguade et al. ............ 717/151
2010/0162250 Al* 6/2010 Adl-Tabatabai et al. ..... 718/101

OTHER PUBLICATIONS

Lowering STM overhead with Static Analysis. Yehuda Afek, Guy
Korland, and Arie Zilberstein. The 23rd International Workshop on

compiter encoutiters an instruction within the afomic.
‘ransaction o access a shered memory ocation

112
Jes ‘mermry ancess
& dominatod of postdominated by anoihe
2cosss mads by the atomc transacton?,
120

conmpiler aucesses souroe code comprising alomic
‘ransacton, begins stafic analysis
0

Languages and Compilers for Parallel Computing (LCPC2010).
Oct. 7-9, 2010.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi.
2006. Optimizing memory transactions. In Proceedings of the 2006
ACM SIGPALN conference on Programming language design and
implementation (PLDI *06). ACM, New York, NY, USA, pp. 14-25.
Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.
Murphy, Bratin Saha, and Tatiana Shpeisman. 2006. Compiler and
runtime support for efficient software transactional memory. In
Proceedings of the 2006 ACM SIGPLAN conference on Program-
ming language design and implementation (PLDI *06). ACM, New
York, NY, USA, pp. 26-37.

(Continued)

Primary Examiner — Li B Zhen

Assistant Examiner — Lenin Paulino

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Systems and methods for optimizing transactional memory
operations may employ static analysis of source code and
static caching of memory objects to elide redundant trans-
actional accesses. For example, a compiler (or an optimizer
thereof) may be configured to analyze code that includes an
atomic transaction to determine if any read accesses to
shared memory locations are dominated by a previous read
or write access to the same locations and/or any write
accesses to shared memory locations are post-dominated by
a subsequent write access to the same locations. Any access
within a transaction that is determined to be redundant (e.g.,
any access other than the first read of a given shared memory
location from within the transaction or the last write to a
given shared memory location from within the transaction)
may be replaced (by the compiler/optimizer) with a non-
transactional access to a cached shadow copy of the shared
memory location.

20 Claims, 10 Drawing Sheets

compli

™
130

the

shared memory looation
125

‘more acoesses

compilor ganerates operatn f slors data et
rom shared memory location n @ tivead-ocal copy
1465

yes

150

o

ormpier oulpuls cade execultable 1o implemert Fansacion,

andor sors t threac4ocal copies of shared memory focatons
160




US 9,424,015 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Code Generation and Optimisation for Transactional Memory Con-
structs in an Unmanaged Language. Cheng Wang, Wei-Yu Chen,
Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai. Interna-
tional Symposium on Code Generation and Optimization, 2007
(CGO ’07). Mar. 2007 pp. 34-48.

Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion
Berkowits, James Cownie, Robert Geva, Sergey Kozhukow, Ravi
Narayanaswamy, Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady
Tal, and Xinmin Tian. 2008. Desigh and implementation of trans-
actional constructs for C/C++. In Proceedings of the 23rd ACM
SIGPLAN conference on Object-oriented programming systems
languages and applications (OOPSLA ’08). ACM, New York, 17
pages.

Aleksandar Dragojevic, Yang Ni, and Ali-Reza Adl-Tabatabai.
2009. Optimizing transactions for captured memory. In Proceedings
of the twenty-first annual symposium on Parallelism in algorithms
and architectures (SPAA ’09). ACM, New York, NY, USA, pp.
214-222.

Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng
Wu. 2009. Reducing Memory Ordering Overheads in Software
Transactional Memory. In Proceedings of the 7th annual IEEE/
ACM International Symposium on Code Generation and Optimi-
zation (CGO *09). IEEE Computer Society, Washington, DC, USA,
pp. 13-24.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Soft-
ware Transactional Memory: Why Is It Only a Research Toy?. ACM
Queue 6, 5 (Sep. 2008), pp. 46-58.

Draft Specification of Transactional Language Costructs for C++,
Version 1.0. Editors: Ali-Reza Adl-Tabatabai and Tatiana Shpeis-
man, 31 pages., Aug. 4, 2009.

Transactional Locking II. Dave Dice, Ori Shalev, and Nir Shavit. In
Proceedings of the 20th International. Symposium on Distributed
Computing 2006 (DISC 2006), 15 pages.

Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and
Michael L. Scott. 2009. A comprehensive strategy for contention

management in software transactional memory. In Proceedings of
the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP *09). ACM, New York, NY, USA, pp.
141-150.

Michael F. Spear, Maged Michael, and Christoph von Praun:
RingSTM: Scalable Transactions with a Single Atomic Instruction.
In: Proceedings of the 20th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2008), 10 pages.

A Qualitative Survey of Modern Software Transactional Memory
Systems. Virendra J. Marathe and Michael L. Scott. University of
Rochester, 2004 Tech. Report # TR 839, 20 pages.

Yosi Lev, Victor Luchangco, Virendra J. Marathe, Mark Moir, Dan
Nussbaum and Marek Olszewski: Anatomy of a Scalable Software
Transactional Memory. In: Proceedings. of the 4th ACM SIGPLAN
Workshop on Transactional Computing (Transact 2009). Raleigh,
NC (Feb. 2009), 10 pages.

Dave Dice and Nir Shavit: TLRW: Return of the Read-Write Lock.
In: Proceedings of the 4th ACM SIGPLAN Workshop on Transac-
tional Computing. Raleigh, NC (Transact 2009), 9 pages.

Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza
Adl-Tabatabai, Richard L. Hudson, Bratin Saha, and Adam Welc.
Single global lock semantics in a weakly atomic STM. In: Proceed-
ings of the 3rd ACM SIGPLAN Workshop on Transactional Com-
puting (Transact 2008). Also published in SIGPLAN Not. 43, 5
(May 2008), 15-26.

Does Transactional Memory Keep Its Promises? Results from an
Empirical Study. Victor Pankratius and Ali-Reza Adl-Tabatabai and
Frank Otto. University of Karlsruhe, Tech. Report Dec. 2009, 34
pages.

Why STM can be more than a Research Toy. Dragojevic
Aleksandar, Felber Pascal, Gramoli Vincent, and Guerraoui Rachid.
2009, 14 pages.

Luke Dalessandro, Michael F. Spear, and Michael L. Scott: NOrec:
Streamlining STM by Abolishing Ownership Records. In: Proc. of
the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2010). Bangalore, India (Jan. 2010),
11 pages.

* cited by examiner



U.S. Patent Aug. 23,2016 Sheet 1 of 10 US 9,424,015 B2

compiler accesses source code comprising atomic
fransaction, begins static analysis
100

»i
<

Y

compiler encounters an instruction within the atomic
fransaction to access a shared memory location
110

memary access
is dominated or post-dominated by another
access made by the atomic transaction?
120

A 4 A 4
compiler generates non-transactional compiler generates transactional access
access to a thread-local copy of the operation fargeting shared memory location
shared memory location 130
125 I

memory access is
first read of memory location?
140

compiler generates operation to store data read
from shared memory location in a thread-local copy
145

more accesses
to shared memory locations in transaction?
150

yes

compiler outputs code executable to implement fransaction,
comprising non-transactional accesses, transactional accesses,
and/or stores to thread-focal copies of shared memory locations
160

FIG. 1



U.S. Patent Aug. 23,2016 Sheet 2 of 10 US 9,424,015 B2

compiler accesses source code comprising atomic fransaction
200

\ 4
compiler replaces code for each access to shared
memory within the transaction with instrumented code
executable to perform a transactional access
210

|

compiler analyzes instrumented code to identify
redundant transactional accesses
220

|

compiler generates instructions to reserve a thread-local copy of
each shared memory location accessed by instructions within
the transaction in response to the first access to the shared
memory location, and, if the first access is a read access, to
Store data read from the shared memory location to the copy
230

|

compiler replaces redundant transactional
accesses with non-transactional accesses to
thread-local copies of targeted memory locations
240

Y

compiler outputs code executable to implement transaction,
comprising transactional accesses, and non-transactional loads
and/or stores to thread-local copies of shared memory locations
250

FIG. 2



U.S. Patent Aug. 23,2016 Sheet 3 of 10 US 9,424,015 B2

compiler accesses source code comprising atomic
transaction, begins static analysis
300

<
<

A 4

compiler encounters an instruction within the atomic
transaction to read a shared memory location
310

read access
is first access made to the shared
location by the atomic transaction?
320

\ 4 \ 4
compiler replaces instruction with compiler replaces instruction with transactional
a non-transactional read access read access targeting the shared location
to the thread-local copy of the 330
shared memory location
325

\ 4

compiler generates code to reserve space for a
shadow copy of the shared location in thread-
local memory and to store data read from the

shared location in the thread-local shadow copy

340

A

more read accesses
to shared memory locations in transaction?
350

yes

compiler finished processing read accesses
to shared memory locations
360

FIG. 3



U.S. Patent Aug. 23,2016

Sheet 4 of 10

US 9,424,015 B2

400

compiler accesses source code comprising atomic
lransaction, begins static analysis

»l

A 4

410

compiler encounters an instruction within the atomic
fransaction to write {o a shared memory location

write access

420

wnie access
is first access made to the shared
location by atomic transaction?
430

compiler generates code to reserve space
for a shadow copy of the shared
location in thread-local memory
440
\ 4
compiler replaces instruction with a non-
fransactional write access to thread-local
copy of the shared memory location
450

s last write access made to the shared
location by the atomic transaction?

Y

compiler replaces instruction
with transactional write access
fargeting the shared location
425

A

more write

460

accesses to shared memory locations?

yes

470

compiler finished processing write accesses
to shared memory locations in the transaction

FIG. 4




U.S. Patent Aug. 23,2016 Sheet 5 of 10 US 9,424,015 B2

compiler accesses source code comprising atomic
transaction, begins static analysis
500

v

compiler encounters an instruction within the atomic
transaction to access a shared memory location
510

compiler replaces instruction
with transactional read

access ltargeting the shared

focation; adds code to store

access
is a read access that is the firs
access targeting this shared location by the
atomic transaction? value read in thread-local
520 memory (e.g., temp)
no 929

yes

\ 4
compiler replaces instruction with code for
non-transactional access targeting temp location
830

access
is last write to this shared location?
50

compiler generates code for transactional write access
to write value in temp location to this shared location
550

»

A

\

compiler finished processing

no accesses to this

shared memory location
565

another access to this
shared location by the atomic transaction?
560

FIG. 5



U.S. Patent Aug. 23,2016 Sheet 6 of 10 US 9,424,015 B2

compiler accesses source code comprising atomic
transaction, begins static analysis
600

Y

compiler encounters aliasing blockade
610

compiler can elide
fransactional accesses

pointer aliases any

across the other pointer(s) in current transaction?
aliasing blockade 620
625

compiler cannot elide transactional accesses
across the aliasing blockade
630

|

compiler adds transactional write calls for all possible
aliased pointers elided up to this point (those
targeting aliased locations for which transactional
wirites were called before the aliasing blockade)
640

|

compiler adds code to invalidate the shadow copies of
all aliased variables written before the aliasing blockade
650

FIG. 6



U.S. Patent

Aug. 23, 2016

Sheet 7 of 10

begin tracking and analyzing transactional
loads and stores using data-flow graph(s)
700

[
r

) 4

for a given
def point, def point is an implicit def
corresponding fo a function call?
710

def point is
non-implicit def and target of any
reached use is inside fransaction?
120

all targets of
def-def chains for the def point
are inside the transaction?
730

A 4

US 9,424,015 B2

transactional write
call must be
performed, and
shadow location
invalidated
715

transactional write
call must be
performed; and
shadow location
updated with
written value
725

A 4

transactional write call for
former def can be elided
740

transactional write call
must be performed

135

A 4

A A

more def points in graph?
150

finished analyzing transactional stores
160

FIG. 7




U.S. Patent Aug. 23,2016 Sheet 8 of 10 US 9,424,015 B2

begin tracking and analyzing transactional
loads and stores using data-flow graph(s)
800

»
'

Y

for a given read access reads
use point, shadow copy for target shadow copy B
location is valid in current block? non-transactionally
§10 815
mark shadow copy as
Shadow cony is valid in this block;
no . pyis yes read access reads
valid for all predecessor edges in graph?
shadow copy
820 :
non-transactionally
825
\ 4
read access reads target
location transactionally;
marks shadow copy as
valid in this block
830

A

A 4

more use points in graph?
850

finished analyzing transactional loads
860

FIG. 8



U.S. Patent

Aug. 23, 2016

Sheet 9 of 10

US 9,424,015 B2

atomic : atomic
source N ggm:g transaction
code d 920 code
910 = 930
application
source code
200 executable application code
950
FIG. 9A
atomic atomic
source | compiler | optimizer trans%ctlon
code > "l 925 > code
910 20
application
source code
900 executable application code

FIG. 9B

950




U.S. Patent

Aug. 23, 2016

Sheet 10 of 10

US 9,424,015 B2

computer system
1000
memory
1010 -
shared transactional
memory space
1060

program
instructions | compiler optimizer
1020 1015 1025

application executable

source code application code

1030 1035
interconnect
1040
processor(s)
network storage 1070
interface device(s)
1050 1045 thread-local storage
1075

FIG. 10



US 9,424,015 B2

1
SYSTEM AND METHOD FOR OPTIMIZING
SOFTWARE TRANSACTIONAL MEMORY
OPERATIONS USING STATIC CACHING OF
MEMORY OBJECTS

BACKGROUND
Description of the Related Art

With the ongoing multi-core revolution in the computing
industry, parallel programming is becoming ubiquitous.
Thus, the computing industry needs as many tools as pos-
sible to make parallel programming a manageable task for
programmers. In that vein, Transactional Memory (TM) is a
promising concurrency control technology that aids pro-
grammers writing parallel programs to perform correct data
sharing between concurrent computations (which commonly
manifest as “threads”). Transactional memory is widely
considered to be the most promising avenue for addressing
issues encountered in concurrent programming and execu-
tion. Using transactional memory, programmers may specify
what should be done atomically, rather than how this atomi-
city should be achieved. The transactional memory imple-
mentation may then be responsible for guaranteeing the
atomicity, largely relieving programmers of the complexity,
tradeoffs, and software engineering problems typically asso-
ciated with concurrent programming and execution. Trans-
actional memory may be implemented in hardware, in
software, or in a combination of the two, in various embodi-
ments.

Transactional memory (TM) implementations may pro-
vide programmers with the ability to mark blocks of code as
transactions (e.g., using a language level construct such as
the “atomic { . . . }”” block), and the system may ensure that
the code is executed atomically and in isolation from con-
currently executing transactions. When a region of code is so
designated, it should appear as if the section is executed in
its entirety or not at all, and it should appear as if the
executions of concurrently executing atomic blocks are not
interleaved with each other. This capability may dramati-
cally simplify the construction of concurrent programs that
are correct, efficient, and scalable, because it relieves pro-
grammers of the need to explicitly embed synchronization
mechanisms into their application code (for example using
mutual exclusion locks to explicitly prevent the concurrent
execution of different “critical sections” of code). Typical
TM implementations execute atomic blocks of code as
“optimistic” transactions, meaning that, rather than prevent-
ing concurrent execution, they proceed with the hope that no
interference occurs, and have the capability to confirm that
this is the case, rolling back the transaction and retrying it in
the case that there is interference.

Runtime support for transactional memory has been
explored in various contexts, including software-only
(STM), hardware-only (HTM), and hardware-software
hybrid (HyTM) contexts. However, the HTM implementa-
tions proposed to date seem unrealistic for currently avail-
able computer architectures. Of the existing HTM proposals,
the only viable options, at least in the near future, appear to
be the so-called “best-effort” HTMs. In these implementa-
tions, the HTM applies its best effort to run a transaction in
hardware, and must fall back to a software alternative in case
the HTM is unable to successfully commit the transaction in
hardware (e.g., because of various resource limitation
issues). This means that near-future practical TM runtimes

10

15

20

25

30

35

40

45

50

55

60

2

will likely be either fully software or hybrid TMs. In either
case, practical TM runtimes will continue to include a
dominant STM component.

Although STMs are a viable method of implementing
support for memory transactions, they are known to incur
significant overhead. For example, in a typical STM imple-
mentation, a single load or store to shared memory is
transformed (e.g., by a compiler or via library interfaces)
into several STM bookkeeping memory loads and stores
(including an atomic compare-and-swap instruction in some
cases) to enable conflict detection between concurrent trans-
actions. Thus there is a need to incorporate as many opti-
mizations in STMs as possible. The compiler can, and in
some existing systems has, helped in this regard. For
example, several standard redundancy elimination tech-
niques have been applied to transactional code to signifi-
cantly reduce the cost of the STM instrumentation. How-
ever, some of these existing optimizations are not widely
applicable to different STM implementations. For example,
some existing optimization techniques were developed for
one type of STM implementation (e.g., an STM implemen-
tation that employs undo logs), but they may not be as
effective, or may even cause incorrect behavior, in other
types of STM implementations (e.g., in STM implementa-
tions that employ redo logs).

SUMMARY

The systems and methods described herein for optimizing
transactional memory operations may employ a static analy-
sis of source code and static caching of memory objects to
elide redundant transactional accesses. More specifically,
the techniques described herein may be used to elide STM
barriers by caching shared data that has already been read
and/or modified by a transaction in the host thread’s private
memory (e.g. on its stack, or in some block of memory local
to the host thread). Subsequent reads and writes of the
shared data by the transaction may be fulfilled from the
cached copy in thread-local memory, thus avoiding the
expensive STM read/write barriers typically used to access
shared memory from within a transaction.

In some embodiments, a compiler (or an optimizer
thereof) may be configured to analyze code that includes an
atomic transaction to determine if any read accesses to
shared memory locations are dominated by a previous read
or write access to the same locations and/or any write
accesses to shared memory locations are post-dominated by
a subsequent write access to the same locations. Any access
within a transaction that is determined to be redundant (e.g.,
accesses other than the first read of a given shared memory
location from within the transaction, without a previous
write, or the last write to a given shared memory location
from within the transaction) may be replaced (by the com-
piler/optimizer) with a non-transactional access to a cached
shadow copy of the targeted shared memory location. Con-
versely, the first read of a given shared memory location
from within the transaction (without a previous write) and/or
the last write to a given shared memory location from within
the transaction may be implemented using transactional
memory accesses that target the given shared memory
location. In some embodiments, the compiler/optimizer may
inject code that is executable to reserve a location in
thread-local memory for the shadow copy of the targeted
memory location the first time an instruction within the
transaction targets that shared memory location, and/or to
invalidate a shadow copy, under certain conditions.



US 9,424,015 B2

3

In some embodiments, a determination of read-after-read,
read-after-write, write-after-read, and write-after-write con-
ditions on accesses to shared memory locations (which may
enable the compiler to elide STM barrier operations for the
latter read/write access) may be performed using existing
techniques, such as common sub-expression elimination,
loop-invariant hoisting, etc. The STM barrier elision strat-
egy herein may be applied effectively in a wide range of
STM runtime designs, including all state-of-the-art STMs, in
various embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating one embodiment of
a method for eliding transactional memory accesses by a
compiler, as described herein.

FIG. 2 is a flow diagram illustrating one embodiment of
a method for instrumenting and optimizing transactional
memory operations using static caching of memory objects,
as described herein.

FIG. 3 is a flow diagram illustrating one embodiment of
a method for eliding transactional read accesses, as
described herein.

FIG. 4 is a flow diagram illustrating one embodiment of
a method for eliding transactional write accesses, as
described herein.

FIG. 5 is a flow diagram illustrating an example of the use
of the techniques described herein for eliding transactional
read accesses and/or transactional write accesses, according
to one embodiment.

FIG. 6 is a flow diagram illustrating one embodiment of
a method for determining whether transactional accesses can
be elided across aliasing blockades, as described herein.

FIG. 7 is a flow diagram illustrating one embodiment of
a method for determining whether transactional write
accesses are redundant, as described herein.

FIG. 8 is a flow diagram illustrating one embodiment of
a method for determining whether transactional read
accesses are redundant, as described herein.

FIGS. 9A and 9B are block diagrams illustrating the
compilation of application source code into executable
application code, according to various embodiments.

FIG. 10 is a block diagram illustrating one embodiment of
a computer system configured to implement a software
transactional memory and mechanisms for optimizing trans-
actional memory operations using static caching of memory
objects, as described herein.

While various embodiments are described herein by way
of example for several embodiments and illustrative draw-
ings, those skilled in the art will recognize that embodiments
are not limited to the embodiments or drawings described. It
should be understood that the drawings and detailed descrip-
tion thereto are not intended to limit the embodiments to the
particular form disclosed, but on the contrary, the intention
is to cover all modifications, equivalents and alternatives
falling within the spirit and scope of the disclosure. Any
headings used herein are for organizational purposes only
and are not meant to be used to limit the scope of the
description. As used throughout this application, the word
“may” is used in a permissive sense (i.e., meaning having
the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

As noted above, transactional memory is a promising
concurrency control technology for parallel programming in

10

15

20

25

30

35

40

45

50

55

60

65

4

the new multi-core era of computing. In the absence of
comprehensive hardware support, software-only (STM) or
hardware-software hybrid (HyTM) transaction memory sys-
tems may continue to be the means to execute memory
transactions. However, in various implementations, STMs
may incur significant performance overheads, which may
undermine their programmability advantages when com-
pared with other concurrency control technologies (e.g.
locks). To that end, a fair amount of research is currently
underway aimed at optimizing the performance of STMs. In
some cases, optimizations performed by a compiler can
significantly aid STMs by exploiting the semantics of trans-
actional memory systems to optimize the generated code.
The effectiveness of such an approach has been demon-
strated by several prior STM compiler optimizations. The
systems and methods described herein implement a new
compiler optimization strategy, which may further improve
the performance of generated code by reducing STM over-
head, thus making STM more appealing to the programmers.
In contrast to some previous compiler optimizations that are
applicable only to a small set of STM runtimes (e.g., to
STMs based on undo logs), the optimizations described
herein may be applied in a wide range of STM runtimes, in
different embodiments.

Compilers typically instrument code that includes one or
more atomic transactions by replacing loads and stores to
shared memory from within the atomic transactions with
calls to STM runtime routines. These routines are sometimes
referred to as STM “barriers”. In various embodiments, all
of'the STM bookkeeping work needed for ensuring isolation
between concurrent transactions may be done inside these
barriers. For example, for shared memory load instrumen-
tation, such a barrier may typically perform several func-
tions. First, a load (or read) barrier may ensure that it is safe
for the transaction to access the target location in read-only
mode. This may be done in a variety of different ways
including (a) taking a snapshot of an “ownership record”
(sometimes called an “orec”) associated with the target
location and verifying from the snapshot that no concurrent
transaction can possibly be writing to the location, (b)
acquiring read-ownership of the orec, or (c¢) checking a
global timestamp to determine if a concurrent, possibly
conflicting, transaction committed its updates in the interim
(i.e. in the period of time between when the transaction
accessed the location and when the transaction attempts to
commit). While the optimization techniques described
herein are presented in the context of ownership record
based STMs, ones skilled in the art will appreciate that these
techniques may be applicable even in STMs that do not
require ownership records.

In some embodiments, a second function of the load
barrier may be to log the location targeted by the load, and
its corresponding STM state (e.g., a snapshot of its orec) in
the enclosing transaction’s “read set”. In some embodi-
ments, the load barrier may then check to see if the target
address was previously written by the enclosing transaction.
For example, this may involve a lookup in a write set
summary bitmap or a write set implemented as a hash table,
in some embodiments. If so, the load barrier may return the
value written by the transaction (either from a transaction’s
redo log, or from the target location itself, in case of an
implementation based on undo logs). Otherwise, it may
execute some additional operations. For example, the load
barrier may read the value of the location, and finally (in
most cases), it may re-verify that the read was consistent
with the prior snapshot of the location’s STM state (which
may be referred to as the “validation” step).



US 9,424,015 B2

5

Similarly, for shared memory store instrumentation, a
store (or write) barrier may typically perform the following
functions. First, the STM store barrier may ensure that it is
safe for the transaction to write to the target location. In
various embodiments, this may be done by acquiring a lock
in the target location’s orec, or by taking a snapshot of the
location’s orec (e.g., in the case of implementations in which
the transaction acquires ownership of the target location at
commit time, which may be referred to as lazy ownership
acquisition). In some embodiments, the store barrier may
also log the target location’s orec in the transaction’s “write
set” (which may be used to acquire and then release orec
locks at commit time). In addition, the store barrier may
either log the new value being written in the target location
in the transaction’s “redo log” (which may be used to flush
out the transaction’s “speculative writes” to the target loca-
tions when it commits), or may log the old value at the target
location in the transaction’s “undo log” (which may be used
to roll back the transaction’s speculative writes in the case
that it aborts). In some embodiments, if the STM uses an
undo log, the store barrier may write the new value in the
target location as the final step of the barrier.

In various embodiments, STM optimizing compilers may
further sub-divide STM barriers into two parts: a first part
that is directed to ownership acquisition (which may include
the first two functions of the STM read/write barriers
described above), and a second part that is directed to
read/write checking/logging (which may include the remain-
ing functions of the STM read/write barriers described
above). In such embodiments, the compiler may be able to
“hoist” a single ownership acquisition operation on top of
(i.e. cause it to be performed prior to) a group of read/write
logging operations if the compiler can determine that the
ownership acquisition “covers” the entire group (e.g., if the
locations targeted by the group of read/write logging opera-
tions is associated with a single orec). In some embodi-
ments, the compiler may elide multiple read logging opera-
tions if the compiler can determine that they all involve the
same target location. As previously noted, typical compiler
optimizations for write logging elision operate on the
assumption that the STM runtime is an undo log based
system. Under this assumption, the redundant write log
operations may simply be replaced with a store instruction
directed toward the target location. However, the optimiza-
tions described herein may also be applicable in systems that
are not based on undo logs. Note that in some embodiments,
compiler optimization techniques for transactional memory
implementations may leverage general purpose compiler
optimization techniques, such as common sub-expression
elimination, constant propagation, loop-invariant hoisting,
determining aliases, etc., to determine whether it is safe to
elide redundant ownership acquisition and read/write log-
ging operations for STM barriers.

The techniques described herein are directed to the read/
write logging aspect of transactional memory compiler
optimizations. As noted above, these techniques may be
applied in a variety of STM runtimes, including undo log
based STMs and redo log based STMs (which now dominate
the state-of-the-art STM runtime space). By contrast, many
of the STM read/write barrier elision optimizations previ-
ously proposed in the context of undo log STMs cannot be
effectively applied to redo log based STMs. In fact, some of
the previous techniques cannot even be applied correctly
(much less efficiently) to redo log based runtimes. For
example, the following C-like pseudo code depicts a con-
crete example of such a deficiency. This code includes a

20

25

35

40

45

6

read-after-write scenario, in which a transaction writes to a
location and then reads from it.

// sharedX is a global variable of type int (32 bit)
/
_transaction {

// some code

sharedX = foo( );
// some more code

bar = blah(sharedX);
// more code

The source code above may be transformed to the fol-
lowing code by some previous transactional memory com-
pilers:

Start:
Transaction txn = BeginTransaction( );
// some instrumented code

int tmpl = foo( );
AcquireWritePermission(txn, &sharedX);
TranWrite32(txn, &sharedX, tmpl);

// some more instrumented code

AcquireReadPermission(txn, &sharedX);
int tmp2 = TranRead32(txn, &sharedX);
bar = blah(tmp2);

// ' more instrumented code

if ({CommitTransaction(txn))
goto Start;

Note that in this and other examples described herein, the
functions AcquireReadPermission and AcquireWritePermis-
sion may be runtime routines for acquiring read ownership
and write ownership of the target location, respectively (e.g.,
read ownership or write ownership of sharedX, in this
example). In these examples, the functions TranRead32 and
TranWrite32 may perform read set and write set checking/
logging, respectively.

Some existing TM compiler optimizers can elide the
AcquireReadPermission call, and replace the TranRead32
call with a direct read of sharedX. These optimizations are
correct in the context of undo log based STMs. However, in
the context of redo log based STMs, the TranRead32 call
cannot be correctly elided because the logical value of
sharedX (created by the previous write to sharedX) resides
in the transaction’s redo log. A similar restriction exists for
transactional stores. As a result, with this existing TM
compiler optimization technology, redundant TranRead and/
or TranWrite calls cannot be correctly elided for STM
runtimes that employ redo logs for transactional stores.

As with some existing TM compiler optimizations, the
goal of the optimization techniques described herein is to
elide as many STM read/write barriers as possible without
compromising correctness. As discussed above, various
optimization techniques may be directed to eliminating
redundant ownership acquisition calls, eliminating read/
write checking/logging calls, or both. In various embodi-
ments, the compilers described herein may include optimi-
zation techniques directed to the elision of the read/write
checking/logging calls. These techniques may in various
embodiments include the caching of reads and writes of an
atomic transaction in a thread local memory region (e.g., a



US 9,424,015 B2

7

thread stack), and the use of those cached reads and writes
directly to elide redundant read/write logging calls whenever
it is correct to do so. Note that those skilled in the art will
appreciate that these techniques may be easily migrated to
task-based concurrency frameworks, e.g., by reserving task-
local memory regions to the same effect.

In some embodiments, the compiler optimizations
described herein may leverage the API of a transactional
memory compiler’s transaction support library for calling
STM read/write barriers. For example, in various embodi-
ments, the API for such a transaction support library may
include the following (or similar):

Acquire{Read/Write } Permission(Transaction txn,
Address addr)—these functions may be configured to
acquire the corresponding permissions, on behalf of the
caller transaction, to access the target location ‘addr’;
and to update the transaction’s read/write sets.

Tran{Read/Write} XX (Transaction txn, Address
addr{, XX value})—these functions may be configured
to perform the transactional read/write, on address
‘addr’, of size XX (wherein XX may be the size of the
value in bits, and may be a multiple of 8, up to 64, for
the various primitive types in C++, for example). This
function may also perform logging the operation in the
read set or the undo/redo log.

ValidateTransaction—this function may be configured to
validate the transaction after a TranReadXX call.

Using the function calls above as examples, a compiler
may inject AcquireReadPermission, TranReadXX, and Vali-
dateTransaction calls in place of a transactional load of size
XX, and AcquireWritePermission and TranWriteXX calls in
place of a transactional store of size XX.

As noted above, the compiler optimizations described
herein may target Tran{Read/Write} XX elision. More spe-
cifically, in some embodiments, whenever the compiler
injects a Tran{Read/Write} XX call for a transactional load/
store, it may also reserve a thread local memory location
(e.g., a location on the current activation record of the thread
stack) for the location being read/written, and may populate
this “cached” copy of the location targeted by the load/store
operation with the value read/written by the Tran{Read/
Write} XX call. Thereafter, if the compiler determines (e.g.,
using existing redundant-STM-barrier-detection techniques,
common sub-expression elimination, value numbering, etc.)
that the same location is read or written by subsequent
instructions in the transaction, the compiler may replace the
corresponding Tran{Read/Write} XX call with a non-trans-
actional load/store operation targeting the cached copy of
that location.

One embodiment of a method for eliding transactional
memory accesses is illustrated by the flow diagram in FIG.
1. As illustrated in this example, a compiler may access
source code comprising an atomic transaction, as in 100, and
may begin a static analysis of the code. For example, the
source code for an application to be compiled may include
a critical section identified by an “atomic” designation, or
using another mechanism to identify a group of instructions
that access shared memory locations or should for other
reasons be executed atomically. In this example, when the
compiler encounters an instruction within the atomic trans-
action that accesses a shared memory location (e.g., a
location in a shared transactional memory), as in 110, it may
be configured to determine whether the memory access is
dominated or post-dominated by another access made by
another instruction within the atomic transaction, as in 120.
Note that, in the classic compiler optimizations notion, a
statement A may be said to be dominated by a statement B

10

15

20

25

30

35

40

45

50

55

60

65

8

if B lies on all control flow paths leading to A (e.g., from the
entry block of the function that contains A and B to A).
Alternatively, in the classic compiler optimizations notion, a
statement A may be said to be post-dominated by a statement
B if B lies on all control flow paths originating from A (e.g.,
all control flow paths from A to the exit block of the function
that contains A and B). If the memory access is not domi-
nated or post-dominated by another access within the atomic
transaction, shown as the negative exit from 120, the com-
piler may generate a transactional access operation targeting
the shared memory location, as in 130. For example, the
compiler may replace a generic load or store operation with
a transactional read or transactional write, which may in
some embodiments include an operation to acquire the
appropriate ownership of the targeted memory location
and/or the logging of the access operation in the transac-
tion’s read or write set. If the memory access is the first read
access targeting the shared memory location, shown as the
positive exit from 140, the compiler may generate an opera-
tion to store the data that was read from the shared memory
location (i.e. by a transactional read) in a thread-local copy
of the shared memory location, as in 145. For example, in
some embodiments, the compiler may cache the results of
this read access in a temporary variable on the thread’s
stack, or in a block of memory local to the host thread, as
described above.

If the memory access is dominated or post-dominated by
another access within the atomic transaction, shown as the
positive exit from 120, the compiler may generate a non-
transactional access to a thread-local copy of the shared
memory location (e.g., one created in response to encoun-
tering a previous access to the shared memory location), as
in 125. As illustrated by the feedback from 150 to 110 in
FIG. 1, the method may include repeating the operations
illustrated as 110 to 145 for any other accesses to shared
memory locations by instructions within the atomic trans-
action being analyzed. Once this static analysis has been
completed for all accesses to shared memory locations by
instructions within the atomic transaction, shown as the
negative exit from 150, the compiler may output code that
is executable to implement the atomic transaction, as in 160.
For example, in some embodiments the compiler may output
code that is executable to implement the application con-
taining an identified critical section, and may replace the
source code for that critical section with executable code
that includes the transactional accesses, and the non-trans-
actional loads and/or stores targeting thread-local copies of
shared memory locations that were generated during the
static analysis.

Note that in various embodiments, the operations of a
compiler configured to optimize transactional memory
operations using the static caching of memory objects may
be performed in two or more passes and/or using two or
more components (e.g., sub-modules) of the compiler. For
example, in some embodiments, source code comprising an
atomic transaction may be instrumented to perform trans-
actional memory accesses during a first phase of a compi-
lation exercise, and the static analysis described herein for
eliding some of those transactional memory accesses may be
performed during an optimization phase of the compilation
exercise. FIG. 2 is a flow diagram illustrating one embodi-
ment of a method for instrumenting and then optimizing
transactional memory operations using static caching of
memory objects. As illustrated in this example, in some
embodiments, a compiler may access source code compris-
ing an atomic transaction, as in 200, and may replace code
for each access to shared memory within the atomic trans-



US 9,424,015 B2

9

action with instrumented code that is executable to perform
a transactional access, as in 210. As illustrated at 220, in this
example, subsequent to instrumenting the code to perform
these transactional accesses, the compiler may analyze the
instrumented code to identify redundant transactional
accesses, such as those described herein.

As illustrated in FIG. 2, the compiler may generate
instructions to reserve a location in thread-local memory for
each shared memory location accessed by instructions
within the transaction in response to the first access to the
shared memory location. In addition, if that first access is a
read access (a transactional read), the compiler may generate
instructions to store data that was read from the shared
memory location by the first access (the transactional read)
to that shared memory location in a thread-local copy of the
shared memory location, as in 230, effectively caching that
data in a location to be accessed by subsequent read and/or
write operations to that shared memory location. For
example, the compiler may replace redundant transactional
accesses (i.e. both read and write accesses) to shared
memory locations with non-transactional accesses to such
thread-local copies of targeted memory locations, as in 240.
Note that if the first access to a shared memory location from
within the transaction is a write access, the corresponding
location in thread-local memory may be reserved at that
point, and the data to be written by the write access may be
written (e.g., cached) to this thread-local memory location
instead of to the targeted memory location itself. This
thread-local memory location may then be accessed by any
subsequent read and/or write accesses to the targeted
memory location from within the transaction, including the
first read access to the targeted memory location. Once the
compiler has elided any eligible transactional accesses (and
performed any other compilation, instrumentation, or opti-
mization functions of the compiler), the compiler may
output code that is executable to implement the atomic
transaction, as in 250. As in the previous example, the code
output by the compiler may in some embodiments be
executable to implement an application containing an iden-
tified critical section, and may replace the source code for
that critical section with executable code that includes the
transactional accesses, and the non-transactional loads and/
or stores targeting thread-local copies of shared memory
locations that were generated during the static analysis.

The compiler optimization technique described above is
described in more detail as follows, according to one
embodiment. In this example, the compiler may always
preserve the first TranReadXX call to a target location L
within the dynamic extent of a transaction, unless there has
been a previous TranWriteXX call to target location L. If the
first access to target location L is a TranReadXX call, the
compiler may also reserve a “shadow” copy of size XX on
its thread local memory for L (referred to herein as L"), and
may inject code that is executable to copy the value returned
from TranReadXX to I'. This may ensure that the logical
value of L is cached by the transaction for subsequent reuse.
Note that if the first TranReadXX call to a target location L
is dominated by a TranWriteXX call to target location L, the
shadow copy may have already been reserved in the thread
local memory for L. In this example, all subsequent Tran-
ReadXX( . .., L) calls may be replaced with a direct load
of L' until such time as it becomes unsafe to do so (as
described below). In other words, as described above, a
TranReadXX( . . ., L) call can be elided by the compiler if
it is dominated by another TranReadXX( . . ., L) call or by
a TranWriteXX( . . . , L, v) call. Note that elision of

25

30

35

40

45

55

10

TranReadXX calls and AcquireReadPermission calls are
orthogonal matters, and the latter is outside the scope of this
disclosure.

One embodiment of a method for eliding transactional
read accesses is illustrated by the flow diagram in FIG. 3. As
illustrated at 300, and described above, the method may
include a compiler accessing source code comprising an
atomic transaction, and beginning a static analysis of that
source code. In this example, when the compiler encounters
an instruction within the atomic transaction to read a shared
memory location, as in 310, the compiler may be configured
to determine whether this read access is the first access made
to the shared memory location by instructions within the
atomic transaction, as in 320. If so, shown as the positive
exit from 320, the compiler may replace the instruction with
a transactional read access targeting the shared memory
location, as in 330, and may generate additional code that is
executable to reserve space for a shadow copy of the shared
location in thread-local memory and to store data that was
read from the shared memory location in the thread-local
shadow copy, as in 340.

If'this read access is not the first access made to the shared
memory location by instructions within the atomic transac-
tion, shown as the negative exit from 320, the compiler may
replace the instruction with a non-transactional read access
to the thread-local shadow copy of the shared memory
location (i.e. one reserved by a previous read access or
reserved in response to a previous write access targeting the
same shared memory location), as in 325. As illustrated by
the feedback from 350 to 310 in FIG. 3, the method may
include repeating the operations illustrated as 310 to 340 for
any other read accesses to shared memory locations by
instructions within the atomic transaction being analyzed.
Once this static analysis has been completed for all read
accesses to shared memory locations by instructions within
the atomic transaction, shown as the negative exit from 350,
the compiler has completed this portion of its analysis, as in
360.

In various embodiments, TranWriteXX call elision may
be performed differently than TranReadXX call elision. For
example, in one embodiment, if there are N TranWriteXX
calls to update location L. within the dynamic extent of a
transaction, and if it is safe to do so, the first N-1 calls may
be elided and replaced by N-1 stores to L', which is the
shadow copy of L. However, the N* call to TranWrite-
XX(...,L,v)may be preserved, in this example. This may
ensure that the last transactional store to L is made through
the STM barrier. In other words, a TranWriteXX( ..., L,v))
call can be elided if it is post-dominated by another Tran-
WriteXX( . . ., L, v,) call. This aspect of the compiler
optimization technique described herein may enable the
approach to work correctly with undo log based STMs, since
the last store to L is directed to L and any previous stores,
which are redundant in this context, do not need to be
directed to L. As previously noted, this technique also works
correctly with redo log based STM runtimes.

One embodiment of a method for eliding transactional
write accesses is illustrated by the flow diagram in FIG. 4.
As illustrated at 400, and described above, the method may
include a compiler accessing source code comprising an
atomic transaction, and beginning a static analysis of the
code. In this example, when the compiler encounters an
instruction within the atomic transaction to write a shared
memory location, as in 410, the compiler may be configured
to determine whether this write access is the last write access
made to the shared memory location by instructions within
the atomic transaction, as in 420. If not, shown as the



US 9,424,015 B2

11

negative exit from 420, the compiler may determine whether
the write access is the first access made to the shared
location by instructions within the atomic transaction, as in
430. If so, shown as the positive exit from 430, the compiler
may generate additional code that is executable to reserve
space for a shadow copy of the shared location in thread-
local memory, as in 440. The compiler may then replace the
instruction with a non-transactional write access targeting
the thread-local shadow copy of the shared memory loca-
tion, as in 450.

If this write access is the last write access made to the
shared memory location by instructions within the atomic
transaction, shown as the positive exit from 420, the com-
piler may replace the instruction with a transactional write
access to the shared memory location, as in 425. As illus-
trated by the feedback from 460 to 410 in FIG. 4, the method
may include repeating the operations illustrated as 410 to
450 for any other write accesses to shared memory locations
by instructions within the atomic transaction being analyzed.
Once this static analysis has been completed for all write
accesses to shared memory locations by instructions within
the atomic transaction, shown as the negative exit from 460,
the compiler has completed this portion of its analysis, as in
470.

Note that in some embodiments, the compiler can also
correctly move the TranWriteXX calls forward, which may
be leveraged to batch multiple TranWriteXX calls (e.g.,
TranWriteXX calls for different target locations). In some
embodiments, this kind of batching may enable other com-
piler optimizations to be applied to operations inside these
TranWriteXX calls. For example, the compiler may in some
embodiments inline the TranWriteXX calls, and then apply
redundancy elimination techniques to eliminate redundan-
cies between consecutive TranWriteXX calls. More specifi-
cally, consecutive updates to the redo/undo log will end up
using the same registers for key STM runtime internal data
structure components such as the index of the redo/undo log,
the redo/undo log base address, etc., thus reducing register
pressure and ecliminating extraneous memory loads and
stores.

In some embodiments, the STM runtime can provide a
TranGroupWriteXX( . . . , locs[ |, vals[ ]) operation that
takes an array of locations and corresponding values as
inputs, and performs a composite N location TranWriteXX
operation. This potentially eliminates N-1 TranWriteXX
calls in cases in which the compiler is unable to inline all
these calls, e.g., due to inlining budgeting constraints.

Note that in some embodiments, a shadow copy L', of
location L that has been created in response to a call to
TranReadXX for [, may also be used to elide redundant
TranWriteXX calls targeted to location L. Similarly, a
shadow copy L' created in response to a call to TranWriteXX
may also be used to elide redundant TranReadXX calls
targeted to L. This may be illustrated by the following
example pseudo code:

_transaction {
// some code

// the rvalue of the next statement is generated in part from
// location x
.. = eXpr<x>;
// more code

// redundant write
X =
// more code

X=.;
// the rvalue of the next statement is generated in part from

12

-continued

// location x

/

// redundant read
.. = eXpr2<x>;

In this example, the code above may be transformed by

o the compiler into the following code:

15

20

25

30

35

45

50

55

60

65

Start:
Transaction txn = BeginTransaction( );
// some code

// the rvalue of the next statement
// location x
AcquireReadPermission(txn, &x);
tmpl = TranReadXX(txn, &x);

... = expr<tmpl>;

// more code

is generated in part from

// redundant write
AcquireWritePermission(txn, &x);
tmp2 = ..;

TranWriteXX(txn, &x, tmp2);

// ' more code

AcquireWritePermission(txn, &x);
tmp3 = ..;
TranWriteXX(txn, &x, tmp3);
// the rvalue of the next statement
// location x
I
// redundant read
AcquireReadPermission(txn, &x);
tmp4 = TranReadXX(txn, &x);
.. = expr<tmp4>;

if (!CommitTransaction(txn))
goto Start;

is generated in part from

In some embodiments, by using the Tran{Read/Write} XX
elision strategy described herein and applying existing
Acquire{Read/Write}Permission elision techniques, the
resulting code can be further transformed by the compiler
into the following code:

Start:
Transaction txn = BeginTransaction( );
// some code

// the rvalue of the next statement is generated in part from
// location x

AcquireReadPermission(txn, &x);

tmpl = TranReadXX(txn, &x);

... = expr<tmp1l>;

// ' more code

AcquireWritePermission(txn, &x);

// eliding redundant TranWriteXX call by reusing tmp1l
tmpl =..;

// ' more code

// AcquireWritePermission elided by other optimizations

I

// This is not a redundant transactional store, since it is

// the last in this scope/transaction and post-dominates the

// previous transactional store

tmpl =..;

TranWriteXX(txn, &x, tmpl);

// the rvalue of the next statement is generated in part from

// location x

I

// redundant read since this transactional load is dominated by
// the previous transactional load; eliding AcquireReadPermission,
// and TranReadXX calls



US 9,424,015 B2

-continued
.. = expr<tmpl>;
if (!CommitTransaction(txn))
goto Start;

Note that, in the above example, the second TranReadXX
call may be considered to be redundant, whereas the first
TranWriteXX call may be considered to be redundant.
Throughout this example, a common shadow copy of x
(shown in the code as tmpl) may be used for Tran{Read/
Write}XX call elision.

FIG. 5 is a flow diagram illustrating an example of the use
of the techniques described herein for eliding at least some
of the transactional read accesses and/or transactional write
accesses of an atomic transaction. This example illustrates
the actions taken by a compiler in response to encountering
read and/or write accesses within a atomic transaction that
target a given shared memory location, according to one
embodiment. As illustrated at 500, the compiler may access
source code comprising an atomic transaction, and may
begin a static analysis of that code. In this example, the
compiler encounters an instruction within the atomic trans-
action to access (e.g., to read or write to) a shared memory
location, as in 510. In response, the compiler is configured
to determine whether this access is a read access that is the
first access made to the shared memory location by instruc-
tions within the atomic transaction, as in 520. If so, shown
as the positive exit from 520, the compiler may replace the
instruction with a transactional read access targeting the
shared memory location, as in 525, and may generate
additional code that is executable to store the data that was
read from the shared memory location in thread-local
memory (e.g., in a shadow copy of the memory location,
shown in FIG. 5 as a variable called temp). If this access is
not a read access that is the first access made to the shared
memory location by instructions within the atomic transac-
tion (e.g., if it is a second or subsequent read access, or is a
write access), shown as the negative exit from 520, the
compiler may replace the instruction with a non-transac-
tional access to a thread-local shadow copy of the shared
memory location (i.e. one reserved in response to the first
read or write access targeting the shared memory location),
as in 530.

If this access is the last write access made to the shared
memory location by instructions within the atomic transac-
tion, shown as the positive exit from 540, the compiler may
generate additional code that is executable to perform a
transactional write access to the shared memory location, as
in 550, to copy the value of the thread-local temp variable
to the shared memory location. As illustrated by the feed-
back from 560 to 530 in FIG. 5, the operations illustrated as
530 to 560 may be repeated if there are any additional
accesses to this shared memory location by instructions
within the atomic transaction. Once this static analysis has
been completed for all accesses to this shared memory
location by instructions within the atomic transaction,
shown as the negative exit from 560, the compiler has
completed this portion of its analysis, as in 565. Those of
ordinary skill in the art will appreciate that these techniques
may be applied by a compiler to atomic transactions that
include read-after-read, read-after-write, write-after-read, or
write-after-write patterns in the accesses made to a shared
memory location.

The compiler optimization techniques described herein
may be further illustrated by another, slightly more compli-
cated, example found below. In this example, the transaction
code is first shown in an instrumented form:

10

15

20

25

30

35

40

45

50

55

60

65

Start:
Transaction txn = BeginTransaction( );
// Case 1:

/
// read variable x1
AcquireReadPermission(txn, &x1);
tmpl_1 = TranReadXX(txn, &x1);
if () {
// re-read x1
AcquireReadPermission(txn, &x1);
tmpl_2 = TranReadXX(txn, &x1);
}else {

// no read of x1

// Case 2:
/
// read variable x2 inside a conditional statement
if () {
AcquireReadPermission(txn, &x2);
tmp2_1 = TranReadXX(txn, &x2);
}else {

// no read of x2

// re-read x2
AcquireReadPermission(txn, &x2);
tmp2_2 = TranReadXX(txn, &x2);
// Case 3:
/
// write variable x3
AcquireWritePermission(txn, &x3);
TranWriteXX(txn, &x3, <exprl>);
if () {
/I re-write X3
AcquireWritePermission(txn, &x3);
TranWriteXX(txn, &x3, <expr2>);

}else {

// no write to x3

// Case 4:
/
// write variable x4 inside a conditional statement
if () {
AcquireWritePermission(txn, &x4);
TranWriteXX(txn, &x4, <expr3>);

}else {

// no write to x4

/I re-write x4
AcquireWritePermission(txn, &x4);
TranWriteXX(txn, &x4, <exprd>);
if ({CommitTransaction(txn))
// commit failed, restart transaction
goto Start;

In some embodiments, the code above may be trans-
formed by the compiler into the following code using the
Tran{Read/Write} XX elision approach described herein:

Start:
Transaction txn = BeginTransaction( );
// Case 1:
I
// read variable x1
AcquireReadPermission(txn, &x1);
tmpl_1 = TranReadXX(txn, &x1);
if () {
// re-read x1, read from tmpl_1 since this read is dominated
// by the former read
tmpl_2 = tmpl_1;
}else {

// no read of x1

// Case 2:

/

// read variable x2 inside a conditional statement

/

// hoisted acquire read permission call (done using existing
// techniques)



US 9,424,015 B2

15

-continued

AcquireReadPermission(txn, &x2);
if () {
tmp2_1 = TranReadXX(txn, &x2);

}else {

// no read of x2

// re-read x2; cannot elide this TranReadXX call since it is
// not dominated by a similar call
tmp2_2 = TranReadXX(txn, &x2);
// Case 3:
/
// write variable x3
AcquireWritePermission(txn, &x3);
// cannot elide this call since it is not post-dominated by a
// TranWriteXX(tx,. &x3, ...) call
TranWriteXX(txn, &x3, <exprl>);
if () {
/I re-write X3
TranWriteXX(txn, &x3, <expr2>);

}else {

// no write to x3

/I Case 4:
I
// write variable x4 inside a conditional statement
I
// hoisted acquire write permission call (done using existing
// techniques)
AcquireWritePermission(txn, &x4);
if () {
// tmp4_1 is the shadow copy of x4
tmp4_1 = <expr3>;
}else {

// no write to x4

// re-write x4
// update the cached shadow copy of x4
tmp4_1 = <exprd>;
// now do the TranWriteXX call since this write is not
// post-dominated by a TranWriteXX call for x4
TranWriteXX(txn, &x4, tmp4_1);
if (!CommitTransaction(txn))
// commit failed, restart transaction
goto Start;

Note that in some embodiments, there may be some
difficulty in enforcing the Tran{Read/Write}XX elision
method described so far in Case 2 and in Case 3 of the above
pseudo code. However, in other embodiments, e.g., embodi-
ments that employ some partially-redundant expression
analysis, the compiler may move around the Tran{Read/
Write} XX calls to enable the optimizations described above.
For example, the Case 2 pseudo code may first be trans-
formed into the following code:

// Case 2:
/
// read variable x2 inside a conditional statement
/
// hoisted acquire read permission call (done using existing
// techniques)
AcquireReadPermission(txn, &x2);
if () {
tmp2_1 = TranReadXX(txn, &x2);
// some code ...
// re-read x2
tmp2_2 = TranReadXX(txn, &x2);
}else {
// read x2
tmp2_2 = TranReadXX(txn, &x2);

In this example, the resulting code above may then be
transformed into the following code:

10

15

20

25

30

35

40

45

50

60

65

16

/I Case 2:
I
// read variable x2 inside a conditional statement
I
// hoisted acquire read permission call (done using existing
// techniques)
AcquireReadPermission(txn, &x2);
if () {
tmp2_1 = TranReadXX(txn, &x2);
// some code ...
// re-read x2 (elide the TranReadXX call)
tmp2_2 = tmp2_1;
}else {
// read x2
tmp2_2 = TranReadXX(txn, &x2);

Note that similar techniques may be applied to eliminate
the redundant TranWriteXX call in Case 3, in some embodi-
ments.

In some embodiments, some constraints may be made on
the motion of Tran{Read/Write}XX calls in order to pre-
serve correctness of program behavior. For example, in
some embodiments, pushing TranReadXX calls from an
if . . . else statement to the predecessor basic block, so as to
eliminate redundant Tran{Read/Write}XX calls appearing
after the if . . . else statements may not be allowed, because
this may lead to data races that did not exist in the original
program, e.g., if transactions are used to “publish” data from
thread local to the shared data space. The following example
pseudo code may be used to illustrate this situation. In this
example, the original code may be as follows:

_transaction {
if (ready) {
val = data;
}

vall = data;

In this example, it may be tempting to hoist the read of
data above the if statement in order to be able to elide the
redundant read of data. This would result in the following
new code:

_transaction {
tmp = data;
if (ready) {
val = tmp;
¥

vall = data;

However, this transformation may lead to data races if a
thread “publishes” data concurrently (using a transaction) as
in the example below. In this example, initially, data==42,
ready==false, val==0.

Thread 1: Thread 2:
_transaction {
tmp = data;
data = 1;
_transaction {
ready = true;
}

if (ready) {



US 9,424,015 B2

17

-continued

val = tmp;

vall = data;

Since this situation may lead to a data race, the question,
“Can val==427?” may not have a clear answer.

In some embodiments, due to the nature of how STM
runtimes behave, there may be certain restrictions on when
redundant Tran{Read/Write}XX calls can be elided. Two
primary concerns may involve opaque function calls and
aliased accesses between two Tran{Read/Write} XX calls for
the same shared variable. For example, in a scenario in
which a shared variable x is read (using a TranReadXX call)
by a transaction, which then makes an opaque function call
(which can potentially update x) and then re-reads x (via a
TranReadXX call), the second read of x cannot be elided.
This is because the logical value of x is not guaranteed to be
the same as the cached value of x (i.e. the value stored in its
shadow copy during the first read of x), because the opaque
function call might have changed it. Note that subsequent
calls to TranReadXX for x can be elided if there are no
intermediate opaque function calls. A similar restriction may
exist for variables accessed via pointers. For example, if the
compiler cannot guarantee that an intermediate pointer-
based update is not directed to x, the compiler cannot
assume that the value in x’s shadow copy is its logical value.
In such cases, the optimizer cannot elide the redundant
TranReadXX calls across pointer based memory accesses. In
short, opaque function calls (which may be referred to as
“function blockades™) and pointer-based aliased accesses
(which may be referred to as “aliasing blockades™) act as
“blockades” for the Tran{Read/Write} XX (elision scheme
described herein.

In some embodiments, the problem of aliasing blockades
may be mitigated by standard alias analysis techniques. For
example, some alias techniques rely on assertions from the
programmer in the form of a command-line switch to the
compiler to tell it something general about the sorts of
aliases in the program. Such techniques may typically
answer the question “is ptr A aliased with ptr B” with ‘yes’,
‘no’ or ‘maybe’. These standard alias analysis techniques
vary only in precision (i.e., in how often they answer
‘maybe’ when the true answer is ‘no’), and in their perfor-
mance costs (in terms of time and/or space).

Is some embodiments, in order to ignore an alias blockade
for a given write through a pointer, the compiler may need
to know that the pointer does not alias any other pointer in
the current transaction. In such embodiments, if there are
any aliases, the compiler cannot elide their corresponding
Tran{Read/Write} XX calls across the alias blockade. Fur-
thermore, the compiler must add TranWriteXX calls for all
possible aliased pointers that have been elided up to this
(alias blockade) point, and these must be called before the
alias blockade under question. In such cases, the shadow
copies of all the aliased variables that were written before
the aliasing blockade must be invalidated. Aliasing block-
ades may in some embodiments effect efficient Tran-
ReadXX-from-pointer elision as well. If the pointer may
alias another pointer (e.g., if the answer is yes or maybe), its
shadow copy is itself redundant with respect to such yes-
maybe aliases.

In some embodiments, an additional optimization for
shared arrays, or pointer-accessed arrays in loops, may occur

10

15

20

25

30

35

40

45

50

55

60

65

18

when it can be shown that there are no aliases among the
pointers in the loop. In such cases, the compiler may use
TranGroupReadXX calls to make a shadow copy of each
array before the loop (e.g., in the pre-header block), may
execute the loop without TranReadXX or TranWriteXX
accesses, and then may use TranGroupWriteXX calls at the
end of the loop to write back the new values of the array
elements.

One embodiment of a method for determining whether
transactional accesses can be elided across aliasing block-
ades is illustrated by the flow diagram in FIG. 6. As
illustrated in this example, the method may include the
compiler accessing source code comprising an atomic trans-
action, and beginning a static analysis of that code. As
illustrated at 610 in FIG. 6, if the compiler encounters an
aliasing blockade (as described above), it may be configured
to determine whether the pointer aliases any other pointer(s)
in the current transaction, as in 620. If not, shown as the
negative exit from 620, the compiler may be configured to
elide transactional accesses across this aliasing blockade, as
in 625 (e.g., using various techniques described herein). If
the compiler determines that the pointer aliases another
pointer in the current transaction, shown as the positive exit
from 620, the compiler may not be able to elide transactional
accesses across this aliasing blockade, as shown in 630. In
this case, the compiler may in some embodiments be con-
figured to add code that is executable to implement trans-
actional writes for all possible aliased pointers that have
been elided up to this point (e.g., those targeting aliased
locations for which transactional writes were called prior to
encountering this aliasing blockade), as in 640, and/or to
invalidate the shadow copies of all aliased variables written
before encountering this aliasing blockade, as in 650. Note
that in some embodiments, the operations illustrated in FIG.
6 may be repeated for other aliasing blockades encountered
during a static analysis phase of a compilation exercise (not
shown).

In some embodiments, various types of standard data-
flow graphs and analyses may be used to track transactional
loads and stores to shared memory locations and to deter-
mine which ones are redundant. Note that all data-flow
graphs have notions equivalent to def-use, use-def and
def-def chains (where “def” is a definition of a value for a
variable, and “use” is a use of the value created by a reaching
definition). In some embodiments, at each def point, if all
targets of def-def chains are inside the transaction, then the
TranWriteXX call for the former def can be elided. Other-
wise the TranWriteXX call must be performed. In some
embodiments, at function calls, which are implicit defs, all
TranWriteXX calls must be performed, and their shadow
locations invalidated (unless, for example, some inter-pro-
cedural analysis indicates which TranWriteXX calls can be
safely elided). For non-implicit defs, if there is any reached
use whose target is inside the transaction, the corresponding
shadow location may need to be updated with the written
value.

One embodiment of a method for determining whether
transactional write accesses are redundant (as described
above) is illustrated by the flow diagram in FIG. 7. As
illustrated at 700 in FIG. 7, the method may include tracking
and analyzing transactional read and/or write accesses (i.e.
transactional loads and stores) using data-flow graphs. In
this example, if a given def point of such a data-flow graph
is an implicit def corresponding to a function call, shown as
the positive exit from 710, a transactional write call may
need to be performed and any corresponding shadow loca-
tion may need to be invalidated, as in 715. In other words,



US 9,424,015 B2

19

in this case, a transactional write access cannot be elided.
Alternatively, if a given def point is a non-implicit def and
the target of any reached use is inside the current transaction,
shown as the positive exit from 720, a transaction write call
may need to be performed and a shadow location corre-
sponding to the target of the write may be updated with the
value that was written, as in 725. Again, in this case, a
transactional write access cannot be elided.

However, as described above, if all targets of def-def
chains for a given def point are inside the current transac-
tion, shown as the positive exit from 730, the transactional
write call for the former def can be elided, as in 740.
Otherwise, the transactional write call cannot be elided (i.e.
it may need to be performed), as in 735. As illustrated by the
feedback from 750 to 710 in FIG. 7, the analysis illustrated
in 710-740 may be performed for each of the def points in
a data-flow graph to determine which, if any, transactional
write accesses can be elided. Once this analysis has been
performed for each def point, shown as the negative exit
from 750, this analysis may be complete, as in 760.

Note that for TranReadXX calls, a standard data-flow
graph may not be usable because there are no use-use links.
In some embodiments, the compiler may employ the fol-
lowing strategy. At each use point, the compiler may deter-
mine whether the shadow copy for that variable or location
is valid in the current block. If so, the compiler may use the
shadow copy. Otherwise, the compiler may determine
whether the shadow copy is valid for all predecessor edges
in the control-flow graph. If so, the compiler may mark the
shadow copy as valid in this block, and may use it. Other-
wise, the compiler may preserve the TranReadXX call, and
may mark the shadow copy as valid in this block.

One embodiment of a method for determining whether
transactional read accesses are redundant (as described
above) is illustrated by the flow diagram in FIG. 8. As
illustrated at 800 in FIG. 8, the method may include tracking
and analyzing transactional read and/or write accesses (i.e.
transactional loads and stores) using data-flow graphs. In
this example, for a given use point of such a data-flow graph,
if the shadow copy of the target location is valid in the
current block (shown as the positive exit from 810), a
non-transactional read access may be used to read the
shadow copy, as in 815. In other words, in this case, a
transactional read access may be elided. As illustrated in this
example, if the shadow copy is valid for all predecessor
edges in the data-flow graph, shown as the positive exit from
820, the shadow copy may be marked as valid in this block,
and a non-transactional read access may be used to read the
shadow copy, as in 825. Again, in this case, a transactional
read access may be elided.

However, if the shadow copy is not valid for all prede-
cessor edges in the data-flow graph, shown as the negative
exit from 820, a transactional read access may be used to
read the target location, as in 830, and the shadow copy may
be marked as valid in this block. In this case, a transactional
read cannot be elided. As illustrated by the feedback from
850 to 810 in FIG. 8, the analysis illustrated in 810-830 may
be performed for each of the use points in a data-flow graph
to determine which, if any, transactional read accesses can
be elided. Once this analysis has been performed for each
use point, shown as the negative exit from 850, this analysis
may be complete, as in 860.

FIG. 9A is a block diagram illustrating the use of a
compiler/optimizer 920 to analyze application source code
900, and to generate atomic transaction code 930 as part of
executable application code 950, according to one embodi-
ment. In this example, compiler/optimizer 920 may be

10

15

20

25

30

35

40

45

50

55

60

20

configured to replace programmer written code (such as in
atomic source code 910), which is to be executed atomically,
with alternate code that may include some transactional load
and/or store operations targeting shared memory locations,
and may also include some non-transactional load and/or
store operations targeting shared memory locations, as
described herein. For example, a programmer may write the
source code for an application, such as application source
code 900, using atomic blocks to specify sets of instructions
that should be executed atomically and/or as a transaction.
Compiler/optimizer 920 may be configured to identify sets
of instructions or other fragments or portions of an appli-
cation (e.g., functions, objects, method, classes, etc) by
recognizing any of various language constructs that may be
used to designate those instructions, fragments or portions to
be executed atomically, and to generate code to ensure that
they are executed atomically.

In some embodiments, programmers may write transac-
tion code using familiar coding styles, but the transaction
may be effected according to particular transactional
memory implementation techniques. The transaction code
written by the programmer may be translated, replaced or
transformed (e.g., by compiler/optimizer 920) into code that
is configured to implement transactions according to one or
more of various software, hardware, or hybrid transactional
memory techniques supported by the execution environment
(e.g., the operating system and/or underlying memory sub-
system hardware). For example, in some embodiments,
transaction code written by the programmer may be trans-
formed into executable code that includes operations to
reserve thread-local memory locations as shadow copies of
those shared memory locations (and in which results of load
and store operations that target those shared memory loca-
tions may be cached), and that includes non-transactional
access to those shadow copies where transactional accesses
would be redundant. In this example, compiler/optimizer
920 may apply various instrumentation techniques and vari-
ous optimizations in single pass (or using a single, multi-
function software module) to produce the compiled appli-
cation code.

While described herein in terms of a compiler, compiler/
optimizer 920 may represent other entities configured to
generate atomic transaction code 930, according to different
embodiments. For example, in one embodiment, compiler/
optimizer 920 may represent a just-in-time (JIT) compiler.
In general, compiler/optimizer 920 may represent any entity
capable of and configured to generate atomic transaction
code for implementing transaction methods, as described
herein. While described herein as various software entities,
compiler/optimizer 920 may, in some embodiments, repre-
sent a hardware-based entity configured to generate atomic
transaction code for implementing transaction methods.
Note that in other embodiments, some or all of the functions
described above as being performed by a compiler or
compiler/optimizer, or by software generated on the basis of
a compiler analysis, may instead be performed in hardware.
In such embodiments, there may be no need for a compiler
to produce code that explicitly causes these functions to be
performed.

Application source code 900 and/or atomic source code
910 may represent program instructions in any of various
languages, according to various embodiments. For example,
in some embodiments, atomic source code 910 may repre-
sent code written in a high level programming language,
such as C, C++, or Java™, In other embodiments, atomic
source code 910 may represent binary instructions or assem-
bly instructions. In yet other embodiments, atomic source



US 9,424,015 B2

21

code 910 may also represent compiler-intermediate instruc-
tions or virtual machine byte code instructions, such as
Java™ byte code instructions.

In some embodiments, atomic transaction code 930 may
be configured to utilize and/or include one or more libraries
of transaction enabling code, such as a transaction support
library (not shown). In various embodiments, atomic trans-
action code 930 and/or a transaction support library may
include functionality to execute transactions according to
various software transactional memory techniques. For
example, in some embodiments, atomic transaction code
930 may include the functionality to begin and end trans-
actions according to various software transactional memory
techniques. In another example, atomic transaction code 930
may make calls into a transaction support library for begin-
ning and committing software transactions, and/or for per-
forming one or more memory access. Additional function-
ality, such as the ability to support self-abort and/or nesting
in transactions, may be provided by functions of a transac-
tion support library, in some embodiments.

FIG. 9B is a block diagram illustrating the use of a
compiler 915 and a separate optimizer 925 to generate
atomic transaction code 930 from atomic source code 910,
according to one embodiment. In this example, transaction
code written by a programmer as part of application source
code 900 may be instrumented by compiler 915 to imple-
ment transactional reads and/or writes, and then optimized
by optimizer 925 to elide one or more transactional reads
and/or writes using the caching techniques described herein.
As described herein, the optimization phase may include
optimizer 925 replacing some transactional load and/or store
operations that target shared memory locations with non-
transactional load and/or store operations, as described
herein. In some embodiments, optimizer 925 may generate
executable code that includes operations to reserve thread-
local memory locations as shadow copies of shared memory
locations (and in which results of load and store operations
that target those shared memory locations may be cached),
and that includes non-transactional access to those shadow
copies where transactional accesses would be redundant.

As in the example illustrated in FIG. 9A, compiler 915
and/or optimizer 925 may represent various entities config-
ured to (collectively) generate atomic transaction code 930,
including just-in-time compilers, other software entities, or
hardware-base entities, according to different embodiments.
As in the example illustrated in FIG. 9A, application source
code 900 and/or atomic source code 910 may represent
program instructions in any of various languages, according
to various embodiments, and atomic transaction code 930
may include calls to functions provided by a transaction
support library (not shown). In the example illustrated in
FIG. 9B, compiler 915 may apply various instrumentation
techniques and may output compiled, instrumented code.
Optimizer 925 may then apply various optimizations as part
of a separate optimization phase of the compilation exercise.
For example, optimizer 925 may apply the transactional
access elision techniques described herein, and may also
apply other optimizations (e.g., common sub-expression
elimination, constant propagation, loop hoisting, etc.) Note
that in some embodiments, these and/or other optimizations
may also be applied by the compiler/optimizer 920 illus-
trated in FIG. 9A.

The techniques described herein for optimizing transac-
tional memory operations using static caching of memory
objects may be implemented in any of a wide variety of
computing systems. FIG. 10 illustrates a computing system
configured to optimize transactional memory operations

20

25

35

40

45

55

22

using static caching of memory objects, as described herein
and according to various embodiments. Computer system
1000 may be any of various types of devices, including, but
not limited to, a personal computer system, desktop com-
puter, laptop or notebook computer, mainframe computer
system, handheld computer, workstation, network computer,
a consumer device, application server, storage device, a
peripheral device such as a switch, modem, router, etc, or in
general any type of computing device.

In some embodiments, the methods described herein may
be implemented by a computer program product, or soft-
ware, that may include a non-transitory, computer-readable
storage medium having stored thereon instructions, which
may be used to program a computer system (or other
electronic devices) to perform the techniques described
herein. A computer-readable medium may include any
mechanism for storing information in a form (e.g., software,
processing application) readable by a machine (e.g., a com-
puter). The machine-readable medium may include, but is
not limited to, magnetic storage medium (e.g., floppy dis-
kette); optical storage medium (e.g., CD-ROM); magne-
tooptical storage medium; read only memory (ROM); ran-
dom access memory (RAM); erasable programmable
memory (e.g., EPROM and EEPROM); flash memory;
electrical, or other types of medium suitable for storing
program instructions. In addition, program instructions may
be communicated using optical, acoustical or other form of
propagated signal (e.g., carrier waves, infrared signals, digi-
tal signals, etc.).

A computer system 1000 may include a processor unit
1070 (possibly including multiple processors, a single-
threaded processor, a multi-threaded processor, a multi-core
processor, etc.). As described herein, processor 1070 may in
some embodiments include thread-local storage 1075, in
which results of various accesses to shared memory loca-
tions (e.g., locations in shared transactional memory space
1060) may be cached. The computer system 1000 may also
include one or more system memories 1010 (e.g., one or
more of cache, SRAM DRAM, RDRAM, EDO RAM, DDR
RAM, SDRAM, Rambus RAM, EEPROM, etc.), a system
interconnect 1040 (e.g., LDT, PCIL, ISA, etc.), a network
interface 1050 (e.g., an ATM interface, an Ethernet interface,
a Frame Relay interface, etc.), and one or more storage
device(s) 1045 (e.g., optical storage, magnetic storage, etc.).
The memory medium may include other types of memory as
well, or combinations thereof. In other embodiments, com-
puter system 1000 may include more, fewer, or different
components than those illustrated in FIG. 10 (e.g., video
cards, audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 1070, the storage device(s)
1045, the network interface 1050, and the system memory
1010 may be coupled to the system interconnect 1040.

One or more of the system memories 1010 may include
program instructions 1020 configured to implement a com-
piler 1015 and an optimizer 1025 (or a combination com-
piler/optimizer, as described herein) that is configured to
provide executable functional sequences for optimizing
transactional memory operations using static caching of
memory objects. Additionally, one or more of the system
memories 1010 may include application source code 1030
(including code configured to request or specify atomic
transactions) and/or executable application code 1035, as
described herein. In some embodiments, program instruc-
tions 1020 may also be configured to implement a transac-
tion support library, which provides various methods for
implementing atomic transactions (not shown).



US 9,424,015 B2

23

In various embodiments, compiler 1015, optimizer 1025,
application source code 1030, and/or executable application
code 1035 may each be implemented in any of various
programming languages or methods. For example, in one
embodiment, compiler 1015 and/or optimizer 1025 may be
JAVA based, while in another embodiments, they may be
written using the C or C++ programming languages. Simi-
larly, application source code 1030 may be written using
Java, C, C++, or another programming language, according
to various embodiments. Moreover, in some embodiments,
compiler 1015, optimizer 1025, and application source code
1030 may not be implemented using the same programming
language. For example, application source code 1030 may
be C++ based, while compiler 1015 may be developed using
C.

As illustrated in FIG. 10, memory 1010 may also include
a shared transactional memory space 1060, which may
support and/or be accessed by transactions in a software
transactional memory implementation, a hardware transac-
tional memory implementation, and/or a hardware-software
hybrid transactional memory implementation, in different
embodiments. In some embodiments, memory 1010 may
include one or more shared storage locations that are acces-
sible by two or more transactions executing in computer
system 1000.

While various systems and methods have been described
herein with reference to, and in the context of, specific
embodiments, it will be understood that these embodiments
are illustrative and that the scope of the disclosure is not
limited to these specific embodiments. Many variations,
modifications, additions, and improvements are possible.
For example, the blocks and logic units identified in the
description are for understanding the described embodi-
ments and not meant to limit the disclosure. Functionality
may be separated or combined in blocks differently in
various realizations of the systems and methods described
herein or described with different terminology.

These embodiments are meant to be illustrative and not
limiting. Accordingly, plural instances may be provided for
components described herein as a single instance. Bound-
aries between various components, operations and data
stores are somewhat arbitrary, and particular operations are
illustrated in the context of specific illustrative configura-
tions. Other allocations of functionality are envisioned and
may fall within the scope of claims that follow. Finally,
structures and functionality presented as discrete compo-
nents in the exemplary configurations may be implemented
as a combined structure or component. These and other
variations, modifications, additions, and improvements may
fall within the scope of the disclosure as defined in the
claims that follow.

Although the embodiments above have been described in
detail, numerous variations and modifications will become
apparent once the above disclosure is fully appreciated. It is
intended that the following claims be interpreted to embrace
all such variations and modifications.

What is claimed is:

1. A method, comprising:

performing, by a computer:

analyzing source code that comprises a sequence of

instructions to be executed as an atomic transaction,
wherein the sequence of instructions comprises
instructions for performing a plurality of accesses to
a shared memory location as part of the atomic
transaction, wherein the shared memory location is
accessible to a plurality of atomic transactions; and

10

15

20

25

30

35

40

45

50

55

60

65

24

replacing the sequence of instructions with an alternate

sequence of instructions to be executed as an atomic

transaction, wherein the alternate sequence of

instructions performs the plurality of accesses and is

executable to implement within the atomic transac-

tion:

storing results of one or more of the accesses to the
shared memory location in a shadow location in
thread-local memory, wherein said storing com-
prises storing in the shadow location a value to be
written to, or read from, the shared memory loca-
tion, based on the one or more accesses;

performing one of the accesses of the original
sequence of instructions to the shared memory
location using a non-transactional memory access
within the atomic transaction that targets the
shadow location; and

performing a different one of the accesses to the
shared memory location using a transactional
memory access that targets the shared memory
location.

2. The method of claim 1, wherein said analyzing com-
prises determining, for each of the plurality of accesses to
the shared memory location, whether performing the access
using a transactional memory access would be redundant
with respect to another one of the plurality of accesses to the
shared memory location.

3. The method of claim 2, wherein one of the plurality of
accesses to the shared memory location is a read access, and
wherein determining whether performing the read access
using a transactional memory access would be redundant
comprises determining whether the read access is dominated
by a previous read or write access to the shared memory
location.

4. The method of claim 3, wherein in response to deter-
mining that performing the read access using a transactional
memory access would be redundant, said replacing com-
prises replacing the instruction to perform the read access
with an instruction to perform a non-transactional read
access that targets the shadow location.

5. The method of claim 3, wherein in response to deter-
mining that performing the read access using a transactional
memory access would not be redundant, said replacing
comprises replacing the instruction to perform the read
access with an instruction to perform a transactional read
access that targets the shared memory location.

6. The method of claim 5, wherein said replacing further
comprises adding to the alternate sequence of instructions an
instruction to perform storing the result of the transactional
read access in the shadow location.

7. The method of claim 2, wherein one of the plurality of
accesses to the shared memory location is a write access, and
wherein determining whether performing the write access
using a transactional memory access would be redundant
comprises determining whether the write access is post-
dominated by a subsequent write access to the shared
memory location.

8. The method of claim 7, wherein in response to deter-
mining that performing the write access using a transactional
memory access would be redundant, said replacing com-
prises replacing the instruction to perform the write access
with an instruction to perform a non-transactional write
access that targets the shadow location.

9. The method of claim 7, wherein in response to deter-
mining that performing the write access using a transactional
memory access would not be redundant, said replacing
comprises replacing the instruction to perform the write



US 9,424,015 B2

25

access with an instruction to perform a transactional write
access that targets the shared memory location.

10. The method of claim 1, wherein the alternate sequence
of instructions is further executable to implement acquiring
read or write ownership of the shared memory location.

11. The method of claim 1, wherein one of the accesses to
the shared memory location is a write access, and wherein
performing the write access using a transactional memory
access that targets the shared memory location comprises
storing the previous value of the shared memory location in
an undo log of the atomic transaction or storing the value
being written to the shared memory location in a redo log of
the atomic transaction.

12. A system, comprising:

one or more processors; and

memory coupled to the one or more processors, wherein

the memory comprises program instructions executable
by the one or more processors to implement a compiler;
wherein the compiler is configured to:
analyze source code that comprises a sequence of
instructions to be executed as an atomic transaction,
wherein the sequence of instructions comprises
instructions for performing a plurality of accesses to
a shared memory location as part of the atomic
transaction, wherein the shared memory location is
accessible to a plurality of atomic transactions; and
replace the sequence of instructions with an alternate
sequence of instructions to be executed as an atomic
transaction, wherein the alternate sequence of
instructions performs the plurality of accesses and is
executable to implement within the atomic transac-
tion:
storing results of one or more of the accesses to the
shared memory location in a shadow location in
thread-local memory, wherein said storing com-
prises storing in the shadow location a value to be
written to, or read from, the shared memory loca-
tion, based on the one or more accesses;
performing one of the accesses of the original
sequence of instructions to the shared memory
location using a non-transactional memory access
within the atomic transaction that targets the
shadow location; and
performing a different one of the accesses to the
shared memory location using a transactional
memory access that targets the shared memory
location.

13. The system of claim 12,

wherein said analyzing comprises determining, for each

of the plurality of accesses to the shared memory
location, whether performing the access using a trans-
actional memory access would be redundant with
respect to another one of the plurality of accesses to the
shared memory location; and

wherein determining whether performing the access using

a transactional memory access would be redundant
comprises determining whether the access is one of: a
read access that is dominated by a previous read or
write access to the shared memory location or a write
access that is post-dominated by a subsequent write
access to the shared memory location.

14. The system of claim 13, wherein in response to
determining that performing the access using a transactional
memory access would be redundant, said replacing com-
prises replacing the instruction to perform the access with an
instruction to perform a non-transactional access that targets
the shadow location.

10

15

20

25

30

35

40

45

50

55

60

65

26

15. The system of claim 13, wherein in response to
determining that performing the access using a transactional
memory access would not be redundant, said replacing
comprises replacing the instruction to perform the access
with an instruction to perform a transactional access that
targets the shared memory location.

16. The system of claim 15, wherein the access is a read
access, wherein the transaction access is a transactional read
access, and wherein said replacing further comprises adding
to the alternate sequence of instructions an instruction to
perform storing the result of the transactional read access in
the shadow location.

17. A non-transitory, computer-readable storage medium,
storing program instructions that when executed on one or
more computers cause the one or more computers to per-
form:

analyzing source code that comprises a sequence of

instructions to be executed as an atomic transaction,
wherein the sequence of instructions comprises instruc-
tions for performing a plurality of accesses to a shared
memory location as part of the atomic transaction,
wherein the shared memory location is accessible to a
plurality of atomic transactions; and

replacing the sequence of instructions with an alternate

sequence of instructions to be executed as an atomic
transaction, wherein the alternate sequence of instruc-
tions performs the plurality of accesses and is execut-
able to implement within the atomic transaction:
storing results of one or more of the accesses to the
shared memory location in a shadow location in
thread-local memory, wherein said storing comprises
storing in the shadow location a value to be written
to, or read from, the shared memory location, based
on the one or more accesses;
performing one of the accesses of the original sequence
of instructions to the shared memory location using
anon-transactional memory access within the atomic
transaction that targets the shadow location; and
performing a different one of the accesses to the shared
memory location using a transactional memory
access that targets the shared memory location.

18. The storage medium of claim 17,

wherein said analyzing comprises determining, for each

of the plurality of accesses to the shared memory
location, whether performing the access using a trans-
actional memory access would be redundant with
respect to another one of the plurality of accesses to the
shared memory location; and

wherein determining whether performing the access using

a transactional memory access would be redundant
comprises determining whether the access is one of: a
read access that is dominated by a previous read or
write access to the shared memory location or a write
access that is post-dominated by a subsequent write
access to the shared memory location.

19. The storage medium of claim 18, wherein in response
to determining that performing the access using a transac-
tional memory access would be redundant, said replacing
comprises replacing the instruction to perform the access
with an instruction to perform a non-transactional access
that targets the shadow location.

20. The storage medium of claim 18,

wherein in response to determining that performing the

access using a transactional memory access would not
be redundant, said replacing comprises:



US 9,424,015 B2
27 28

replacing the instruction to perform the access with an
instruction to perform a transactional access that
targets the shared memory location; and

if the access is a read access, adding to the alternate
sequence of instructions an instruction to perform 5
storing the result of the transactional access in the
shadow location.

#* #* #* #* #*



